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Quantum resonances due to classical stability islands
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We have studied the scattering of a one-dimensional particle by a time-periodically kicked po-
tential. In the classical case, this system displays irregular scattering. We show that the presence of
a large stability island in the classical phase space leads to sharp resonances in the quantum case.
Using the corresponding time-independent system the localization of the resonances is predicted by
a first-order perturbation theory. We show that the observed resonance patterns are closely con-
nected with the quantum tunneling between the chaotic and stability regions of the classical phase

space.

PACS number(s): 05.45.4+b, 47.52.+j, 95.10.Fh

I. INTRODUCTION

Classical irregular scattering has been a subject of
vivid interest for more then one decade [1-3]. As a typ-
ical example of a transient chaos it recently attracted
considerable interest and is a frontier of research on clas-
sical chaotic Hamilton systems. Quantum consequences
of classical irregular scattering have first been studied by
Bliimel and Smilansky [4]. They demonstrated that the
existence of a classical chaotic repeller implies Ericson
fluctuations of the corresponding quantum S matrix.

Meanwhile classical and quantum irregular scattering
has been investigated in several models (see, for exam-
ple Refs. [5,6]). Their common feature was that the clas-
sical chaotic repeller (which is responsible for the appear-
ance of the fractally organized singularities in the classi-
cal scattering) was fully hyperbolic. This means that the
probability density P(t) for a classical particle to stay in
the interaction region for a time longer than t is given by

[7]
P(t) ~e™, 1)

where a is connected with the Lyapunov exponent of the
repeller and with the corresponding Kol’mogorov-Sinai
entropy [8]. In the classical case it implies a self-similar
structure of the scattering singularities (a kind of Cantor
set). In the quantum case, (1) leads to the absence of
long-lived resonances and consequently to Ericson fluc-
tuations of the quantum cross section [4].

In the present paper we will construct a one-
dimensional and periodically driven model in which (1)
is violated. Depending on the parameters of the model,
the corresponding repeller will display a large stability
island leading to an algebraic decay of P(t) [9-12]

P(t) ~t™. (2)
The influence of the elliptic domain on the fractal set of
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the classical scattering singularities will be investigated
in Sec. II. The quantum case is discussed in Sec. III,
where we show that the existence of a classical island of
stability leads to the appearance of sharp resonances. In
Sec. IV we will study the mechanism responsible for the
resonant behavior: “tunneling” between the regular and
the chaotic region in phase space.

II. CLASSICAL DESCRIPTION OF THE MODEL

We study a time-periodically “kicked” scattering sys-
tem which has the following Hamilton function:

H(p,z,t) = 3p" + AV (z) ) 6(t—n) (3)
with the attractive short-range potential V()
1

cosh? z

V(z) = - (4)
“Far away” from the scattering center we can neglect the
potential and consider the particle as free. Therefore we
can fix the asymptotic momentum for t - oo for an
incoming or outgoing particle as

t—lgr—noo |p(t) — Pin| =0, (5)
Jm [p(t) — pout| = 0. (6)

The time development of a particle with initial condi-
tions (xo,po) is given by the following stroboscopic map:

Pas1 = Ba— AV'(z,), ™
Tn+l = Tn + Pnt1.

This map allows us to study the classical properties of the
system numerically. When we apply it to a set of ran-
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| FIG. 1. Poincaré plot for
P 0 ; A = 1. In the center we see a
‘ large “stability island” which is
embedded in a chaotic layer.
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r
dom initial conditions, we can plot a Poincaré scenario fout 1= — Zeut. (11)

which shows the structure of the phase space. There
are two typical cases: For A < 2 we have an elliptic fixed
point in the center surrounded by unbroken Kol’'mogorov-
Arnol’d-Moser tori. We call this region the “stability
island” (see Fig. 1); it is embedded in a chaotic layer. For
A > 2 the fixed point becomes hyperbolic, the stability
island disappears and phase space is dominated by chaos
(see Fig. 2).

Now we want to compute the delay time of a scattered
particle and compare it with formulas (1) and (2). In
order to do it, we introduce asymptotic incoming and
outgoing coordinates and times by

Tin = t~l>n_noo 2(t) =~ tpin, (8)
Tout = tEEIm:”(t) — tPout, 9)
tin = __;iia (10)

Pout

Now we are able to define the delay At, i.e., the time,
the particle spends in the interaction region as

At := tout - tin. (12)

Using (12), we computed the number of particles with a
fixed initial energy E the delay time At of which is bigger
than a given value t. As predicted in [8], we find a clear
exponential decay for the hyperbolic case (see Fig. 3).
In presence of a stability island we obtain an algebraic
decay (see Fig. 4).

III. QUANTUM MECHANICAL DESCRIPTION

A quantum analog of the map (7) is given by the evo-
lution operator over one period, the Floquet operator. In

FIG. 2. Poincaré plot for
A = 3. The phase space is dom-
inated by chaos.




50 QUANTUM RESONANCES DUE TO CLASSICAL STABILITY ISLANDS

3617

T T T
10000 E
1000 & E
particles ] FIG. 3. Number of particles
r ] (out of 1000000) with a delay
[ time At bigger than ¢ for A = 3.
As expected for the completely
100 3 3 chaotic case, it decays exponen-
g tially with t.
10 [ ! ] | I 1
20 30 40 50 60 70 80
t

the present model the Floquet operator has a particularly
simple form:
F=e 5P e V@), (13)
The operator F' describes the time evolution of the sys-
tem: Starting with an initial state |1o) at time ¢ = 0 and
following its time evolution we get after the nth kick:
|n) = F"[3ho). (14)
In numerical calculations, we evaluate e~ %P in the mo-
mentum representation and e~ 3*V(®) in the position rep-
resentation. Thus the main part of the calculation time
is used for Fourier transforms between both these repre-
sentations.
We are interested in the properties of the S matrix in
dependence on the coupling constant A. In order to define

the quantum S matrix, we use the method of Yajima [13]
and Howland [14]. Introducing the Mgller operators

Qi = lim Fy"F"P,

n—Foo

(15)

where Fj is the free Floquet operator e~ 37" and P is the
projector into the absolutely continuous subspace #, of
F we define the S matrix in the standard way:

s=qatq,. (16)
S is unitary on H, and commutes with the free Floquet
operator Fj:

(S, Fo] = 0. 17
Consequently the free quasienergy (i.e., the eigenvalue
of the free Floquet operator Fp) is conserved during the
scattering process.

To construct a basis in which S has a suitable form we
start with the eigenfunction |E,+) of the free Hamilto-
nian Hy:
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FIG. 4. The same as in
Fig. 3, but for A = 1. Since
we have a stability island, the
decay is algebraic.
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Hy=-ir %, (18)
Hy|E, +) = E|E, %), (19)

for positive E.

The eigenvalues of Hy are two-times degenerate. So
|E,+) denotes the eigenstate of Hy which has energy E
and describes a particle traveling from left to right. Sim-
ilarly |E, —) describes a particle with energy E moving
from right to left. In order to obtain the eigenvalues and
eigenvectors of the free Floquet operator F, we have to
compart F with respect to 2wh:

E =0 + 27hn,
n=0, +1, +2, ...,
0 < O < 27h. (20)

Then O is the infinitely degenerate eigenvalue of Fj:
FolE,+) = '°|E, +). (21)

Taking into account the degeneracy of the eigenvalue ©
we will denote the corresponding eigenvector as |0, n, +)

|©,n,£) = |E, ), (22)

where E, n and © are connected by (20). For |©®,n,+)
holds

(O',n',£|0,n,£) = §(© — O") by ns 61 4. (23)

In such a way |©,n, £) is a suitable basis in which the S
matrix can be written as

(©,n,£|S|0',n',F) = S3,7(0)§(0 - 0').  (24)

SI (©) is nothing but the quantum transmission coef-
ficient for a particle coming from the right with initial
energy E;, = © + 2whn and moving after the scattering
process to the left with energy Eoy = © + 27hAn'. Sim-
ilarly S ¥.(©) describes the same process in the other

direction. S¥,(©) is the reflection coefficient for the

left-moving particle and so on.

The symmetry of the potential V (z) implies

S17.(©) = S75(0),

25
§75(0) = 5,.(0). )
Hence, we can simplify the notation and denote
S, (0):=8T(0)=5..,(0).
o (0) = S11.(0) = 5,..,(6) "

S,ﬁn,(@) = S:;,(G)) =S.1(0).

We will call n the channel number.

The numerical calculations of S, ,,(©) forn =n' =0
are presented in Figs. 5-8. In the fully chaotic case with
A = 3 (Fig. 5) we get Ericson fluctuations as predicted by
Bliimel and Smilansky [4]. The ©-autocorrelation func-
tion C,, := (SE1(0)S%, (0" +0)),, (see Fig. 6) is
the predicted Lorentzian |CE ,|? = a/(a + (©/k)?) with
a as in Eq. (1).

For A = 1, where we have a large stability island in the
phase space, we get a series of sharp resonances (Fig. 7).
As we show next, these resonances are connected with
the quantum tunneling into the stability island.

Generally, a time-periodic Hamiltonian (with period 1)
can be written as

oo
H= %hzaa_; + AV (z) z ane 12Tt (27)
n=-—o0o
(in our case all coefficients a,, = 1). We can find solutions
of the corresponding Schrédinger equation starting with

oo

Pz, t) = Z Up (z)e 2™ 1Ot (28)

n=—oo

Solutions of this type have a sharp free quasienergy O.
Inserting (28) into the Schrodinger equation we obtain

un (z) = 2(© + n2nh)u, ()

oo

—2)V(z) > w(x)an i, (29)

l=—o00

0.25 7 T ——r
02 -
0.15 + FIG. 5. The reflection coeffi-
|S_ (@)I cient Sy, (©) as a function of ©
0o for the fully chaotic case with
0.1 + : A = 3 shows Ericson fluctu-
i ations as predicted by Bliimel
/\ /\/\/ “\‘ /\/\/\'\ and Smilansky [4] (% = 0.05).
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. 7 FIG. 6. The ©-autocor-
relation function |Cgyl?> for
0.6 i S00(©). T]‘Je solid line show;s
5 the Lorentzian a/[a + (©/k)?]
|C&)(@)\ predicted by Bliimel and Smi-
lansky [4] with a being the clas-
0.4 ] sical decay rate as in Eq. (1).
The numerical value a = 0.055
is taken from the slope of a fit-
0.2 h ted line in Fig. 3.
0.5 T T T T T
04 + .
0.3 - 7 FIG. 7. The reflection coef-
|S_ (®)| ficient Sg;,(©) as a function of
00 © in the presence of a large
02 | | stability island for A = 1 dis-
plays a sequence of sharp max-
ima (A = 0.05).
0.1 | -
0 |
0 0.2 1.2 1.4

FIG. 8. Gray scale plot of
the total reflection coefficient
S7(®) as a function of ©® and
A.  The solid lines stand for
eigenvalues E} of a correspond-
ing time-independent system,
shifted by 27k; the dashed lines
denote Ej + 2 x 2nh.
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for each n. The “diagonal” part [ = n of this equation
describes a time-independent dynamic:

ull (z) = 2(0 + n2mh)u,(z) — 22V (z)un(z)ao.  (30)
In our case with ap = 1 and V(z) = —1/cosh? z we can
find the eigenvalues of this equation analytically. For

© + 2mwh > 0 the spectrum is continuous, while for © +
n2nh < 0 we find discrete values Ej, [15]

O+ n2rh = E,

2
= —1r? (—(1+2k)+ \/1+%é) )

(31)
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FIG. 9. The Husimi function
of a scattered quantum particle
with maximum reflection coef-
ficient. The wave function en-
ters a quasistable orbit at the
border of the classical stability
island.

The “diagonal” Hamiltonian is a direct sum of these par-
ticular equations over all n. Similarly its spectrum is
nothing but the sum of the particular spectra and con-
sists of a continuous part (the whole real axis) with em-
bedded eigenvalues.

As we have seen from our numerical calculations, states
belonging to different channels n are only slightly mixed
up by the scattering process for small A. In this case we
can take the nondiagonal part of Eq. (29) as a perturba-
tion to the diagonal part.

The embedded eigenvalues are highly unstable and dis-
appear as soon as the perturbation is switched on. How-
land [16,17] has demonstrated that the eigenvalues that

FIG. 10. The Husimi func-
tion of a scattered quantum
particle which is out of the res-
onance. Only small parts of the
wave function enter the orbit
around the classical stability is-
land.

- 90
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have “disappeared” become complex poles of the S ma-
trix (resonances). For small A these poles are close to
the real axis and can be observed as sharp maxima of
the corresponding reflection coefficients which are local-
ized in the neighborhood of the embedded eigenvalues of
the “diagonal” part of Eq. (29). Our numerical calcula-
tions (see Fig. 8) show that the maxima of the reflection
coefficients really stay in the neighborhood of the shifted
eigenvalues Ej, when we vary the coupling constant .
For large A, the nondiagonal part of Eq. (29) becomes
more important; the resonances leave the real axis and
superpose to Ericson fluctuations.

IV. QUANTUM DESCRIPTION IN PHASE
SPACE

In this section we would like to connect the observed
quantum resonances with a tunneling into the classical
stability island. The correspondence between the quan-
tum wave function and the classical phase space is de-
scribed by the Husimi function pg(z,p) [18]:

3621

FIG. 11. The orbit at the border of the
stability island. Parts of the Husimi function
stick into the classical stability island. The
integral of the Husimi function over the sta-
bility island is taken to define the “tunneling

rate” I(6).
pr(z,p) = (27B) " [{=p|¥) %, (32)
with
X P2
Az = +/h/2. (33)

Observing the way the quantum particle travels through
the phase space by computing its Husimi function we see
that in the cases with resonant reflection the wave func-
tion enters an orbit around the stability island where it
stays for a long time (see Fig. 9). Outside the resonance,
only small parts of the wave function enter the orbit (see
Fig. 10).

As one can see in Fig. 11, parts of the Husimi func-
tion are even located inside the stability island so we can
speak about “tunneling” of the quantum particle into
the stability island. For a quantitative check we intro-
duce the tunneling rate I as the integral of the Husimi
function over the classical stability island Z:

0.6 T T T T T
15=(8)] —
0.5 I(©) —
i FIG. 12. The reflection co-
0.4 - efficient S7(®) and the tun-
|S=(©) neling rate I(©). The max-
0.3 | - ima are located at the same
places, but the very small max-
ima of S7(©) [belonging to
0.2 1 7 n = 2 in Eq. (31)] are empha-
sized in I(©). For smaller A,
01 F | both curves become more simi-
) lar (not shown).
0 | 1 1 1
0 0.2 0.4 0.6 o 0.8 1.2 1.4
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I:= //dxdppy(w,p)‘
7

When we compute I for different ©® and compare it with
the total reflection coefficient S~ (©) [the sum of S, . (©)
for fixed © and n’ over all n—see Fig. 12], we see that the
maxima of both curves are located at the same places.
The heights of the maxima are different: The very small
maxima of S, which belong to n = 2 [n as in Eq. (31)],
are much bigger for I(©). When we change A we get
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FIG. 13. Gray scale plot of
the tunneling rate I as a func-
tion of ® and A. The picture
is close to that of the reflec-
tion coefficient S™(®) (Fig. 8),
but maxima belonging to n = 2
are emphasized, so the high-
est maxima are lying near the
crossing points of the lines
of the shifted eigenvalues for
n=1andn=2.

1.6

similar pictures (see Figs. 13 and 8), but we notice the
largest values for I(©) in the neighborhood of the cross-
ing points between the lines of the shifted eigenvalues for
n =1 and n = 2 in Eq. (20).
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FIG. 1. Poincaré plot for
A = 1. In the center we see a
large “stability island” which is
embedded in a chaotic layer.



FIG. 10. The Husimi func-
tion of a scattered quantum
particle which is out of the res-
onance. Only small parts of the
n =90 | wave function enter the orbit

around the classical stability is-

land.




FIG. 11. The orbit at the border of the
stability island. Parts of the Husimi function
stick into the classical stability island. The
integral of the Husimi function over the sta-
bility island is taken to define the “tunneling
rate” I(6).
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FIG. 13. Gray scale plot of
the tunneling rate I as a func-
tion of ® and A. The picture
is close to that of the reflec-
tion coefficient S™(©) (Fig. 8),
but maxima belonging ton = 2
are emphasized, so the high-
est maxima are lying near the
crossing points of the lines
of the shifted eigenvalues for
n=1andn=2.



FIG. 2. Poincaré plot for
A = 3. The phase space is dom-
inated by chaos.




FIG. 8. Gray scale plot of
the total reflection coefficient
S7(©) as a function of © and
A.  The solid lines stand for
eigenvalues E) of a correspond-
ing time-independent system,
shifted by 27hA; the dashed lines
denote Ej + 2 x 2wh.



FIG. 9. The Husimi function
of a scattered quantum particle
with maximum reflection coef-
ficient. The wave function en-
ters a quasistable orbit at the
border of the classical stability
island.



